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Abstract

The present investigation deals with the numerical computation of laminar natural convection with and without surface-to-surface
radiation in a class of right-angled triangular cavities filled with air. The vertical walls are uniformly heated and the inclined walls
are uniformly cooled while the upper connecting walls are adiabatic. The aperture angle u located at the lower vertex of the triangular
cavities between the vertical and the inclined walls identifies the shape of each cavity. This kind of cavity finds application in the min-
iaturization of cabinets housing electronic components constrained by space and/or weight severely. With a view at enhancing the heat
transfer rates and/or reducing the size of cabinets, the influence that surface radiation exerts upon natural convection should be scruti-
nized. To this end, the finite volume method is implemented to perform the computational analysis of the above-described problem(s).
Numerical results are reported for the local quantities, the velocity and temperature fields encompassing aperture angles u that extend
from 15� to 45� at two extreme Rayleigh numbers, Ra = 103 and 106. Additionally, the two global quantities, the mean convective Nus-
selt number and the mean radiative Nusselt number are reported in tabulated and graphical forms for the same controlling parameters.
Overall, it was found that the competition between surface radiation and natural convection in right-angled triangular cavities filled with
air plays a preponderant role. Finally, the analysis culminates with the construction of a comprehensive correlation equation for the total
Nusselt number in terms of the controlling parameters which should be useful for engineering analysis and design. This correlation equa-
tion will undoubtedly provide a fast evaluation avenue to judge the cavity thermal performance.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

A slim body of literature has been geared toward the
quantified competition between natural convection and
surface radiation from vertical plates with prescribed hot
temperatures to the surrounding air with a goal at invigo-
rating heat removal rates. Early analytic and experimental
works on this effort were assembled by Cess [1], Arpaci [2]
and Hasegawa et al. [3]. From a historical perspective, the
study of natural convection from heated vertical plates has
received renewed attention in the last half century due to its
growing importance in the electronic industry [4,5].
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Although liquid forced convection and boiling offer the
highest heat rejection rates from electronic components, air
cooling has been, is and will continue to be a widely used
technique [6]. In particular, air natural convection is
regarded as the most attractive cooling mode when simplic-
ity, economy, reliability and noise become constraint
parameters of importance in engineering design. In view
of these favorable attributes, research is continually done
to gather information about the air cooling limits of elec-
tronic components involving natural convection [4–6].

Another configuration of relevance to the electronic
industry consists of a heated vertical plate enclosed in a
square or rectangular cavity [4,5]. In these standard cavi-
ties, the heat exchange by natural convection takes place
between the heated vertical plate and the opposite cold
plate or between the heated vertical plate and an adjacent
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Nomenclature

B radiosity (W m�2)
cp specific isobaric heat capacity (kJ kg�1 K�1)
Fij view factor from segment i to segment j

g gravitational acceleration (m s�2)
G irradiation (W m�2)
h convective coefficient (W m�2 K�1)
h mean convective coefficient (W m�2 K�1)
k thermal conductivity (W m�1 K�1)
L length of wall (m)
n total number of boundary differential segments
Nu Nusselt number, Nu = h � L/k
Nu mean Nusselt number, Nu ¼ �h � L=k
p pressure (Pa)
q heat flux (W m�2)
Ra Rayleigh number, Ra ¼ g � b � ðT H � T CÞ � L3

H=
ða � mÞ

s distance along the wall (m)
T absolute temperature (K)
u,v velocity components in the x- and y-directions

(m s�1)
x,y Cartesian coordinates (m)

Greek symbols

a thermal diffusivity, a = k/(q � cp) (m2 s�1)
b coefficient of volumetric thermal expansion

(K�1)

dij Kronecker delta
DT prescribed temperature difference (TH � TC) (K)
e total hemispherical emissivity
h dimensionless temperature, (T � TC)/DT

l dynamic viscosity (kg m�1 s�1)
m kinematic viscosity (m2 s�1)
q density (kg m�3)
r Stefan–Boltzmann constant (W m�2 K�4)
u aperture angle (�)
w stream function (kg s�1)

Subscripts

0 reference value
1 natural convection–radiation coupling
2 pure natural convection
A adiabatic
C cold
cri critical
H hot
i, j element indexes
R radiation
T total contribution of convection and radiation
V natural convection
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cold plate. State-of-the-art review articles devoted to the
theoretical analyses, numerical simulations and experimen-
tal observations of natural convection cavity flows can be
found in Ostrach [7] and also in the chapters written by
Raithby and Hollands [8] and Jaluria [9] in specialized heat
transfer handbooks.

Despite that the number of publications on natural con-
vection in square and rectangular cavities is vast [7–9], the
number of publications that take into consideration the
contribution of surface-to-surface radiation in these closed
spaces is scarce, though the impact of surface radiation has
been demonstrated to be significant for intermediate-to-
high emissivity values of the walls. In fact, the presence
of radiation through a transparent gas, such as air, affects
the buoyant air velocity and temperature fields in the cav-
ities. This in turn, modifies not only the temperature pro-
files along the adiabatic wall of the cavities but more
importantly the magnitude of the convective coefficients.
Laminar natural convection with surface radiation interac-
tion in square cavities filled with air has been studied by
Balaji and Venkateshan [10], Akiyama and Chong [11],
Ramesh and Venkateshan [12], and Ridouane et al. [13].
All of these authors found an alteration in the mean Nus-
selt number at the hot wall with increasing wall emissivities.
Deviating slightly from the aim of the above references,
Bouali et al. [14] examined an inclined rectangular enclo-
sure and detected that surface radiation increases the total
Nusselt number, but surprisingly no mention was made
about the influence that surface radiation exerts on the
convective coefficient.

In this paper, the heat exchange in vertical-oriented
right-angled triangular cavities filled with air will be ana-
lyzed. These cavities can be envisioned as sliced cavities
formed from a standard square cavity wherein buoyant
air in conjunction to surface-to-surface radiation trans-
ports the heat from the heated vertical wall to the cooled
inclined wall. As stated in [4,5], the right-angled triangular
cavity configuration finds application in the miniaturiza-
tion of electronic packaging subjected to space and/or
weight constraints. With a view at maximizing heat transfer
rates and/or reducing the sizes of electronic cabinets, the
relative influence that surface radiation exerts on natural
convection should be scrutinized, especially for high wall
emissivities. Hence the objective of this paper is to investi-
gate the synergistic effects of wall emissivities, aperture
angles and temperature differences on the total heat
transfer.

The body of the paper is divided into three sections. The
first section describes the problem formulation highlighting
the linkage between natural convection and surface radia-
tion. The implementation of the finite volume method in
a suitable computational grid is explained in the second
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section along with the convergence criterion and the code
validation. The third section contains the numerical-deter-
mined velocity and temperature fields that lead to the mean
convective and mean radiative heat transfer rates at the
heated vertical wall. In addition, a comprehensive correla-
tion equation for the efficacious and quick cavity design is
included in this section.
2. Problem formulation

2.1. Pure natural convection analysis

The physical system depicted in Fig. 1(a) consists of air
confined to a vertically-oriented right-angled triangular
cavity made with three impermeable walls. The aperture
angle u identifies the bottom vertex of the triangular cavity.
A hot temperature TH is prescribed at the vertical wall, a
cold temperature TC is prescribed at the inclined wall and
the connecting top wall is adiabatic. Owing that the dimen-
sion perpendicular to the plane of the diagram is long com-
pared to the cavity height, the air motion is conceived to be
two-dimensional. Because the gravitational acceleration g

acts parallel to the hot vertical wall, the buoyant air con-
vection may be modeled by the following system of steady
conservation equations:

Mass:

ou
ox
þ ov

oy
¼ 0 ð1Þ

Horizontal momentum:

q � u � ou
ox
þ q � v � ou

oy
¼ � oP

ox
þ l � o

2u
ox2
þ l � o

2u
oy2

ð2Þ

Vertical momentum:

q �u �ov
ox
þq � v � ov

oy
¼�oP

oy
þl �o

2v
ox2
þl � o

2v
oy2
þg � q�q0ð Þ

ð3Þ
Fig. 1. (a) Sketch of the upright right-angled triangular cavity. (b) The
heat balance in a differential segment of the adiabatic top wall.
Energy:

u � oT
ox
þ v � oT

oy
¼ a � o

2T
ox2
þ a � o

2T
oy2

ð4Þ

The Boussinesq approximation is accounted for in Eq.
(3) where q0 denotes a reference density evaluated at the
reference temperature T0 = (TH + TC)/2.

Assuming that the trapped air does not slip at the cavity
walls, the velocity boundary conditions are u = v = 0. The
temperature boundary conditions refer to a prescribed high
temperature TH at the vertical wall, a prescribed low tem-
perature TC at the inclined wall and a null temperature gra-
dient oT

oy ¼ 0 at the top adiabatic wall when surface
radiation is not taken into account.
2.2. Radiative analysis

When surface radiation transfer is considered in the
analysis, the temperature boundary condition at the top
adiabatic wall of the triangular cavity must be changed.
Thereby, the temperature variation along the adiabatic
wall will incorporate the effect of surface radiation on nat-
ural convection.

To commence, the energy balance over a differential wall
segment i depicted in Fig. 1(b) is stated as

qV;i þ qR;i ¼ qV;i þ Gi � Bi ¼ 0 ð5Þ

where qV,i is the local convective heat flux that results from
applying Fourier’s law to the air temperature field T(x,y),
qR,i is the local radiative heat flux, Gi is the irradiation fall-
ing on the wall segment i and Bi is the radiosity away from
the wall surface. The radiosity Bi can be expressed as the
sum of the radiation emitted by the wall surface and the
irradiated energy reflected by it. Specifically, for an opaque
and grey surface, Bi is given by

Bi ¼ ei � r � T 4
i þ 1� eið Þ � Gi ð6Þ

where ei is the total hemispherical emissivity, r is the Ste-
fan–Boltzmann constant and Ti is the temperature of the
wall segment.

Let Ai � Gi designate the amount of irradiating heat
transfer falling on the wall segment i, which is the sum of
all radiative heat reaching segment i from other surfaces
forming the three-wall enclosure. By virtue of the reciproc-
ity rule, the following relation:

Xn

j¼1

dij � 1� eið Þ � F ij

� �
� Bj ¼ ei � r � T 4

i ð7Þ

is obtained where dij is the Kronecker delta, n is the total
number of segments and Fij is the view factor from segment
i to segment j. The numerical values of Fij are determined
by Hottel’s crossed string rule [15]. The summation term
in Eq. (7) is to be taken for all the elements j with which
the element i can interact radiatively. Consequently, the
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abbreviated Eq. (7) forms a system of algebraic equations
accompanying Eq. (5).

3. Numerical computation and validation

The system of partial differential equations (1)–(4), sub-
ject to the proper set of boundary conditions is discretized
with the finite volume method [16,17]. In the conservation
equations, the discretization of the convective term is
accomplished by the second-order-accurate QUICK
scheme, while the pressure-velocity coupling is handled
with the SIMPLE scheme [16]. The velocity field u(x,y),
v(x,y) and the temperature field T(x,y) of the moving air
depend on the characteristic length LH, the sweeping aper-
ture angle u and the imposed temperature difference
TH � TC. If the temperature difference TH � TC is merged
with the buoyant-to-viscous forces ratio, this operation
leads to the height-based Rayleigh number Ra. When sur-
face radiation interacts with natural convection, the two
controlling parameters Ra and u from the natural convec-
tion side, plus the hot wall temperature TH or the cold wall
temperature TC, together with the wall emissivity e from
the radiation side have to be pre-specified.

The energy balance over every segment i along the adi-
abatic wall expressed by Eq. (5) requires the solution of
the system of algebraic equations represented by Eq. (7).

The decision on the grid size was based on sequences of
numerical experiments having sizes that range from 10,843
up to 81,698 triangular elements. Special care was taken to
increase the triangular element density in vulnerable areas
near the walls where steep velocity and temperature gradi-
ents would occur inside the hydrodynamic and thermal
boundary layers, respectively. A critical case corresponding
to the widest u = 45� and the highest Ra = 106 is selected
to perform a sensitivity analysis of the grid. The outcome
of this sensitivity analysis is presented in detailed form in
Table 1. Herein, important parameters such as the maxi-
mum stream function value and the mean Nusselt number
Nu at the hot wall are reported for the two contrasting sit-
uations. One situation involves pure natural convection
absent of surface radiation (e = 0) and the other involves
strong convection–radiation interaction which is character-
ized by e = 1. The mean Nusselt number values Nu
reported in Table 1 are within a 0.2% margin. No apprecia-
ble differences were found in Nu when the grid elements
were increased from 40,686 to 81,698, almost double.
Table 1
Grid sensitivity analysis for a wide triangular cavity with u = 45� and the
highest Ra = 106

e Mesh wmax NuV1 NuR1 NuT1

0 10,843 4.62 � 10�4 10.34 0 10.34
0 40,686 4.61 � 10�4 10.32 0 10.32
0 81,698 4.61 � 10�4 10.32 0 10.32
1 10,843 5.11 � 10�4 10.99 14.66 25.65
1 40,686 5.10 � 10�4 10.99 14.66 25.65
1 81,698 5.10 � 10�4 10.99 14.66 25.65
Hence, the mesh with 40,686 triangular elements was
deemed to be adequate and was chosen to carry out the
entire numerical calculations.

Local convergence was assessed by monitoring the mag-
nitude of the ultimate quantity, i.e., the mean convective
coefficient �h along the hot vertical and cold vertical walls
by setting its variations to less than 10�4. In addition, glo-
bal convergence was guaranteed by controlling the residu-
als of the conservation equations to tiny values less than
10�5.

The computational procedure was validated against the
experimental observations of Elicer-Cortés and Kim-Son
[18]. At the local level, we compared the air temperature
profiles at different heights, and at the global level the mean
Nusselt numbers Nu were contrasted. In the experimental
set-up of [18], three slender upright triangular cavities hold-
ing aperture angles of u = 5�, 10� and 15� were tested. The
hot wall temperatures were set at TH = 40, 60, 80 and
100 �C. For the case of a 15� cavity, Fig. 2 illustrates a rea-
sonable parity between the numerically-estimated tempera-
tures and the temperatures measured at three relative
heights y/LH = 0.1, 0.58 and 0.99. It is worth pointing
out that the lowermost curve for y/LH = 0.1, reveals an
overlapping between the numerical predictions and the
experimental measurements. It should be pointed out that
the numerical temperatures slightly overpredicted the
experimental temperatures at the other two relative heights
y/LH = 0.58 and 0.99. Invariably, the same patterns pre-
vailed in Fig. 3 for the case of a 10� cavity where the tem-
perature measurements were taken at different relative
heights y/LH = 0.1, 0.5 and 0.98. In general, the agreement
between the numerical and experimental air temperatures
at the three locations is acceptable. Overall, it is observable
that the matching between the numerical and the experi-
mental temperatures of [18] tends to improve for the slen-
der upright triangular cavity.

With regards to the mean convective coefficient �h,
Table 2 contains a comparison between the computed
NuV2 and the measured NuV2 for the three aperture angles
Fig. 2. Comparison between the numerical and experimental temperature
profiles at three different elevations inside a 15� triangular cavity.



Fig. 3. Comparison between the numerical and experimental temperature
profiles at three different elevations inside a 10� triangular cavity.

Table 2
Comparison between the numerical and experimental mean convective
Nusselt numbers NuV2 at the hot wall for different combinations of u and
TH

Angle u TH (�C) NuV2 Num. NuV2 Exp.

5� 40 361.9 345.2
60 374.0 342.1
80 379.5 348.2

100 369.3 341.2

10� 40 334.6 300.6
60 375.4 348.8
80 368.7 347.3

100 380.3 343.7

15� 40 354.6 375.1
60 387.4 392.4
80 419.7 387.0

100 420.1 393.2

Fig. 4. Streamlines and isotherms related to pure natural convection for
Ra = 103 and two aperture angles u of (a) 45� and (b) 15�. Other
parameters are: e = 0, TC = 287 K and DT = 26 K.
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u = 5�, 10� and 15� done by [18]. Because the relative
errors for NuV2 are aligned within a 11% band, the level
of concordance can be considered reasonable.

4. Discussion of results

Air motion was set-up in the right-angled triangular cav-
ities by heating the vertical wall at TH and cooling the
inclined wall at TC simultaneously, because the top hori-
zontal wall was adiabatic. The aperture angle u identifying
the bottom vertex separating the hot and cold walls takes
values of 15�, 30� and 45�. The characteristic length chosen
was the height of the hot vertical wall. Accordingly, three
cavities were studied having the height-based Rayleigh
number that vary from a low Ra = 103 to a high Ra =
106. Upon setting the cold wall temperature at TC =
287 K, the temperature difference DT = TH � TC between
the hot and cold walls spread over a 50 K interval. The wall
emissivities e were allowed to switch from 0 (polished sur-
face) to 1 (black surface).

Numerical solutions dealing with the natural convec-
tion–radiation coupling will be compared against the coun-
terpart solutions restricted to pure natural convection. For
the sake of brevity, results will be presented only for two
triangular cavities, one holding the smallest aperture angle
u = 15� and the other the largest angle 45�. The walls are
assumed black owing e = 1; this choice manifests an upper
bound for the radiative transfer analysis.

4.1. Velocity and temperature patterns

In Fig. 4, the airflow patterns in terms of the stream
function and the temperature are presented at a low
Ra = 103 for the two aperture angles u = 15� and 45�
under conditions of pure natural convection (e = 0). The
streamline plots show that both triangular configurations
contain a single clockwise rotating vortex, which takes
the shape of the entire cavity. The stream function gradient
is higher in the 45� cavity than in the 15� cavity, i.e., the
streamlines are denser, which means that the velocity val-
ues are also higher. With respect to the isotherm curves,



Table 3
Mean convective, mean radiative and mean total Nusselt numbers at the
hot wall with and without radiation when DT = 26 K and TC = 287 K

u Ra NuV2 NuV1 NuR1 NuT1 DNuV (%) NuR1

NuT1
(%)

15� 103 13.2 13.3 1.6 14.9 0.3 11
106 15.6 16.0 16.2 32.1 2.2 50

45� 103 4.3 4.4 1.5 5.9 2.8 26
106 10.3 11.0 14.7 25.6 6.5 57
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their orientation is vertical denoting that the heat transfer
process is overriden by conduction. Moreover, the iso-
therm lines are somehow distorted, since the warm air
moved from the left hot wall to the inclined cold wall,
resulting in higher temperatures in the top region of the
cavity. It can also be observed that the isotherms are nor-
mal to the top wall, in harmony with the imposed adiabatic
boundary condition.

Fig. 5 shows the same results that Fig. 4 but considering
surface-to-surface radiation (e = 1). The stream function
contours for both configurations are very similar to the
ones obtained without the presence of surface radiation.
Moreover, the temperature contours are almost identical
with the exception that the isotherms on the left are
inclined towards the hot wall in the upper region of the
cavity. In contrast, the isotherms on the right are inclined
towards the cold wall. This phenomenon is due to the nat-
ure of the boundary condition on the top adiabatic wall,
which implies an outward radiative heat transfer near the
Fig. 5. Streamlines and isotherms related to natural convection-radiation
interaction for Ra = 103 and two aperture angles u of (a) 45� and (b) 15�.
Other parameters are: e = 1, TC = 287 K and DT = 26 K.
hot wall and an inward radiative heat transfer near the
cold wall. It seems that the natural convection–radiation
interaction is small, especially in the 15� geometry. This
statement can be confirmed by contrasting in Table 3 the
mean Nusselt number values on the hot wall at
Ra = 103, for pure natural convection (NuV2) against the
counterpart for natural convection taking into account
the new temperature and velocity fields due to radiation
interaction (NuV1Þ. This comparison brings forward small
differences of DNuV ¼ 2:8% for the 45� cavity and 0.3%
for the 15� cavity when radiation is considered. On the
contrary, radiation influences the total heat transfer in a
remarkable manner. The equivalent mean Nusselt number
due to the radiative heat flux NuR1 accounts for
NuR1=NuT1 ¼ 11% of the total heat transfer (NuT1) for the
15� cavity and grows up to 26% for the 45� cavity and can-
not be ignored.

Fig. 6 presents the streamlines and isotherms for pure
natural convection at the high Ra = 106. When comparing
the 45� configuration in this figure with the one in Fig. 4, it
is evident that the vortex has moved down toward the bot-
tom corner of the cavity and the stream function values are
increased by two orders of magnitude when compared to
the case described by Ra = 103. This deviation corresponds
to higher velocities inside the cavity that translates into the
airflow being dominated by natural convection. For the 15�
configuration the location of the vortex is not significantly
affected, but the magnitude of the stream function has
increased in a similar manner. As a consequence, the tem-
perature field T(x,y) is strongly influenced by the velocity
field u(x,y), v(x,y) and as a result the isotherms in Fig. 6
are arranged horizontally instead of vertically in the cavity
core.

When surface radiation is accounted for by way of
e = 1, the flow patterns are illustrated in Fig. 7. Focusing
the attention on the 45� shape, it can be observed that
radiation modifies the temperature field. At the bottom
of the cavity, the isotherms are analogous to the ones
found without radiation interaction. However, when
approaching the top adiabatic wall, the effect of radiation
heat is noticeable as it tends to cool the hot air layers; this
leads to unstable stratification close to the top wall (i.e.,
cold air over hot air). Surface radiation also touches on
the air velocity field inside the closed space, especially near
the top. From here, it can be perceived that the streamlines
are flattened when compared with their counterparts for
pure convection.



Fig. 7. Streamlines and isotherms related to natural convection-radiation
interaction for Ra = 106 and two aperture angles u of (a) 45� and (b) 15�.
Other parameters are: e = 1, TC = 287 K and DT = 26 K.

Fig. 6. Streamlines and isotherms related to pure natural convection for
Ra = 106 and two aperture angles u of (a) 45� and (b) 15�. Other
parameters are: e = 0, TC = 287 K and DT = 26 K.
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Fig. 7 portrays the streamlines and isotherms for the 15�
cavity with convection-radiation interaction for the high
Ra = 106. Comparing these results against those for the
case of pure natural convection, it is seen that the stream-
lines are almost identical and that the isotherms are mainly
unaffected in the core of the cavity. Towards the top wall,
the isotherms are distorted due to the unstable stratifica-
tion in this region.

In view of the foregoing, it is then concluded that sur-
face radiation has a bearing on the thermal buoyant air
inside the two cavities (the slender and the wide) sharing
a high Ra = 106. In this vein, major differences in the mean
convective Nusselt number due to the presence of surface
radiation are expected. The differences are confirmed from
the numbers listed in Table 3, where heat transfer augmen-
tation of the order of 2.2% and 6.5% for the 15� and 45�
cavities are achievable when surface radiation is permitted.
Moreover, surface radiation elevates the total heat transfer
to 50% in the 15� cavity and to 57% in the 45� cavity when
paired with a high Ra = 106.
4.2. Heat transfer features

In order to analyze the heat transfer features of the two
dissimilar cavities, the Nusselt numbers are calculated as
follows:

NuðsÞ ¼ qðsÞ � L
k � DT

ð8Þ

where s represents the distance along the hot and cold walls
measured from the lower vertex and L is the respective wall
length. The air thermal conductivity k is evaluated at the
reference temperature T0 = (TH + TC)/2.

Subsequently, with this information at hand the mean
Nusselt number Nu can be obtained as

Nu ¼ 1

L
�
Z L

0

NuðsÞ � ds ð9Þ

To assess the effect of surface radiation on the heat transfer
performance of natural convection cavities, the distribution
of the convective Nusselt number NuV and the distribution
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of the radiative Nusselt number NuR along the three walls
are scrutinized for the two limiting conditions: one of pure
convection (e = 0) and the other for the strongest convec-
tion–radiation interaction (e = 1); the two conditions shar-
ing a common Ra = 106.

In Fig. 8(a), the pure convective Nusselt number along
the hot wall NuV2 decreases monotonically from a high
value of 26 at the bottom of the vertical hot wall, reaching
almost zero at the top of the wall. This trend should be
expected, since the separation between the hot and cold
walls grows from the bottom to the top of the cavity
gradually. With no radiation–convection coupling, the radi-
ative Nusselt number NuR2 increases from a minimum of
7.5 at the bottom of the vertical wall to a maximum of 15
around y/LH = 0.09 and then continues to move with a soft
decline with height. This trend responds to the alteration
suffered by the view factor Fij connecting the hot wall with
the cold wall, which experiences a strong increase from the
bottom of the wall to a maximum around y/LH = 0.15.
Thereafter, Fij registers a milder decrease with height. From
a geometric perspective, the view factors Fij from the hot
wall locations to the top adiabatic wall increases monoton-
ically from the bottom of the hot wall to the top, but
because the inclined wall temperature is lower the first effect
prevails. When radiation is allocated, the convective Nus-
selt number NuV1 is in general slightly higher than the one
Fig. 8. Local Nusselt numbers along (a) the hot wall, (b) the cold wall and
adiabatic wall for u = 45�, Ra = 106, e = 1, TC = 287 K and DT = 26 K.
for pure convection and poses a similar decreasing tendency
to a minimum around y/LH = 0.95. After that, NuV1 is
strengthened due to the radiation to the temperature field,
which is more pronounced. From the numbers plotted in
Fig. 8(a) it can be noticed that the mean convective Nusselt
number when coupled with radiation is about 6.5% larger
that the one for the pure convection case. On the other
hand, the radiative Nusselt number NuR1 is always higher
than NuR2, due to the lower temperatures obtained at the
top adiabatic wall; this phenomenon can be seen in
Fig. 8(d).

The same two Nusselt numbers along the cold wall are
depicted in Fig. 8(b). The pure convective Nusselt number
NuV2 descends from a high value at the bottom part to a
minimum around a relative distance s/LC = 0.1. After this
point is surpassed, an increasing Nusselt number emerged
due to the existence of downward air movement along
the cold wall, which translates into a state of convection
domination over one of conduction domination. Also, at
a relative distance along the cold wall s/LC = 0.9, the con-
vective Nusselt number diminishes to zero due to the man-
ifestation of a stagnant zone in the upper right corner of
the triangular cavity. When radiation is integrated, the con-
vective Nusselt number NuV1 stays generally lower than the
pure convective value NuV2 because radiation tends to cool
the hot air layers at the top region of the cavity and softens
(c) the adiabatic wall. In (d) is the dimensionless temperature along the



Fig. 9. Variation of the mean Nusselt number with the Rayleigh number
at the hot wall for the two aperture angles of (a) 15� and (b) 45�. Other
parameters are: e = 1, TC = 287 K and DT = 26 K.
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the temperature gradients near the cold wall. However, in
the upper part of the wall, the opposite effect happens
and radiation is responsible for warming the cool layers
of air in the vicinity of the adiabatic and cold walls, leading
to higher Nusselt numbers than in the case limited to pure
convection. A reduction of approximately 19% is palpable
for the mean convective Nusselt number when surface radi-
ation is reckoned. If radiation and convection remain
uncoupled, the radiative Nusselt number NuR2 takes a
nearly flat pattern except in the upper part of the cold wall,
where its value decreases sharply. With the incorporation
of radiation, the Nusselt values NuR1 are always lower as
a direct reaction to the lower temperatures at the top adia-
batic wall, as can be seen in Fig. 8(d).

The radiative Nusselt number along the top adiabatic
wall is plotted in Fig. 8(c). Also plotted in Fig. 8(d) is the
dimensionless temperature along the top adiabatic wall.
It was already discussed that for the 45� cavity character-
ized by Ra = 106, the overall orientation of the isotherms
was horizontal, so a high and uniform temperature profile
at the top adiabatic wall is expected and this is confirmed in
Fig. 8(d). For almost 80% of the wall length (x/LA < 0.8)
the dimensionless temperature stay higher than 0.8 and
the radiative Nusselt number NuR2 is high and positive,
which means that radiative heat transfer emanates from
the surface. For the other locations x/LA > 0.8, the temper-
ature decreases rapidly and so does the radiative heat trans-
fer, the latter becomes negative (radiative heat transfer
reaching the wall) for x/LA > 0.95. When convection and
radiation interaction is united, a nearly linear temperature
profile is obtained. In addition, a constant positive radia-
tive Nusselt number NuR1 surfaces up at the top adiabatic
wall, except in the vicinity of the cavity vertices. Opposed
to this, the values are highly strengthened resulting in neg-
ative values of NuR1 in the colder side of the wall.

The mean convective and mean radiative Nusselt num-
bers on the hot wall Nu are plotted in Fig. 9 as a function
of the Rayleigh number for the 15� and 45� closed spaces
for fixed TC, DT and e. Focusing on the 45� configuration
in Fig. 9(b), it is clear that the convective Nusselt number
NuV2 grows with the Rayleigh number from a value of
4.3 at Ra = 103 to 10.3 for Ra = 106. When the 45� angle
is cut down to 15�, the NuV2 increments exhibited remark-
able gains. Essentially, this behavior must be attributed to
an increased conductive heat transfer related to the small
separation between the hot and cold walls. For instance,
for the low Ra = 103, NuV2 rises significantly from 4.3 to
13.2, almost a three-fold factor, whereas for Ra = 106 the
NuV2 variation moves up from 10.3 to 15.6. Further, it is
worth mentioned that NuV2 for the 15� cavity stayed nearly
constant for Ra up to 105. Physically, the attainment of this
plateau implies a critical Rayleigh number Racri marking
the demarcation point between the conduction mode and
the onset of the natural convection mode.

The hot convective Nusselt number NuV1 allowing for
radiation interaction allotted by e = 1 is also represented
in Fig. 9. Here, it is evident that the mean convective Nus-
selt number increases due to the radiation presence in the
whole Ra interval for both the 15� and 45� cavities. The
augmentation in the convective Nusselt number is larger
at higher Ra and higher aperture angles. In other words,
for the 45� cavity the NuV1 increment is 2.8% for
Ra = 103 and 6.5% for Ra = 106. On the contrary, for the
15� cavity these NuV1 values descend to a mere 0.3% and
2.2%, so the two curves overlap in Fig. 9(a).

The changes in the mean radiative Nusselt number NuR1

with Ra for both cavities are also exposed in Fig. 9. The
radiative Nusselt number becomes bigger with Ra and
with decreasing aperture angles. Consequently, the total
Nusselt number NuT1 does the same thing. It is clear from
Fig. 9 that the contribution of radiation heat transfer is
very important for both cavities sharing the order of mag-
nitude owed by the convective heat transfer. For the 15�
cavity, the radiative Nusselt number NuR1 is lower than
the convective Nusselt number NuV1 for Ra < 106. This
pattern deviates for the 45� cavity wherein the radiative
and convective Nusselt numbers are equal at a value
around Ra = 105, but the radiation heat transfer shows
signs of domination for higher Ra numbers.
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4.3. Uncoupled natural convection and surface radiation

For the sake of simplification, the uncoupled radiative
Nusselt NuR2 determined from the temperature field emerg-
ing from the pure natural convection treatment is com-
pared with the coupled radiative Nusselt NuR1 in Fig. 10.
This comparison is accompanied by the corresponding
value obtained from a simplistic radiative analysis using
enclosure theory with isothermal walls; the latter is denoted
by NuR;simple. In this last case, the radiation heat transfer qH

is calculated through the avenue of the powerful electrical
analogy [19]. That is

qH ¼
r � T 4

H � T 4
C

� �
=AH

1�eH

eH �AH
þ 1

1
1 AH �F H�Að Þ= þ1 AC �F C�Að Þ=

þ 1
1 AH �F H�Cð Þ=

þ 1�eC

eC�AC

ð10Þ
In here, the view factor F1–2 refers to an infinitely long
enclosure formed by the intersection of three planar walls
(1, 2 and 3):
Fig. 10. Variation of the uncoupled and coupled mean radiative Nusselt
numbers with the Rayleigh number at the hot wall for two aperture angles
of (a) 15� and (b) 45�. Other parameters are: e = 1, TC = 287 K and
DT = 26 K.
F 1–2 ¼
A1 þ A2 � A3

2A1

ð11Þ

which is taken from Siegel and Howell [20].
First, Fig. 10(a) reflects that for the slender 15� cavity

regardless of Ra the mean radiation Nusselt number NuR

is invariant with the three computational procedures used.
Second, for the 45� cavity, Fig. 10(b) indicates that the
mean radiation Nusselt number without coupling NuR2 is
slightly lower than the NuR1 calculated when convection-
interaction is accounted for. In numbers at Ra = 103 the
difference is a tiny 1%. However, at Ra = 106 NuR1 ¼ 14:7
versus NuR2 ¼ 13:2; a disparity equivalent to almost 10%.
Invariably, when the simple radiative analysis based on iso-
thermal walled-enclosure is brought into the picture, then
the mean radiative Nusselt number NuR;simple consistently
overpredicts the mean radiation Nusselt number. For
instance, the error at Ra = 106 corresponds to a respectable
50%. A rather interesting feature in Fig. 10 is that the linear
variation of NuR with Ra on log–log coordinates is synon-
ymous with a power law dependence of the form
NuR ¼ C � Ran inside the Ra-interval [103–106].

4.4. Effect of the temperature difference between the hot and

cold walls

The effect of the temperature difference DT on the heat
transfer rates delivered by the triangular cavities is also
analyzed. Apart from its primary role in the Rayleigh num-
ber, the temperature difference DT has an independent
influence when radiation is considered. Table 4 displays
the impact of DT on the mean convective, mean radiative
and mean total Nusselt numbers at the hot wall. When
the temperature difference DT is increased from 10 to
50 K, the convective Nusselt number with radiation
interaction NuV1 decreases slightly, but the effect is almost
unappreciable for the temperature range analyzed. Never-
theless, the radiative Nusselt number reveals an important
dependence on the temperature difference and its numerical
value decreases with DT for a constant Rayleigh number.
Table 4
Effect of the temperature difference DT on the mean convective, mean
radiative and mean total Nusselt numbers at the hot wall when e = 1 and
TC = 287 K

Fixed parameters DT (K) NuV2 NuV1 NuR1 NuT1

u = 15�, Ra = 1034 10 13.2 13.3 2.0 15.3
26 13.3 1.6 14.9
50 13.3 0.9 14.2

u = 15�, Ra = 106 10 15.6 16.0 20.1 36.2
26 16.0 16.2 32.1
50 16.0 9.1 25.1

u = 45�, Ra = 103 10 4.3 4.4 1.9 6.3
26 4.4 1.5 5.9
50 4.4 1.4 5.8

u = 45�, Ra = 106 10 10.3 11.1 18.3 29.4
26 11.0 14.7 25.6
50 10.9 13.7 24.6
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The discussion of results culminates with a non-linear,
multiple regression analysis of the numerical data gener-
ated for the three 15�, 30� and 45� cavities, with Rayleigh
numbers that range from 103 to 106 and wall emissivity val-
ues varying in 0.2 increments between 0 and 1. Its outcome
produced the correlation equation

NuT1 ¼ NuV1 þ NuR1

¼ 3:32

u
þ 5:02� 10�3 � u3=4 � Ra0:528

� �

� 1þ 7:69� 103 � e � u1:556 � Ra0:210
� �

þ 426� 44:3 �
r � T 4

H � T 4
C

� �
T H � T Cð Þ

� 	
� 10�3 � e5=4 � Ra1=3

ð12Þ
where the aperture angle u is expressed in radians and the
wall temperatures TH and TC in K. Eq. (12) is valid for the
three separate intervals 15� 6 u 6 45�, 103

6 Ra 6 106,
0 6 e 6 1. The maximum relative error between pairs of
the raw data and the predictions is 10% supplying average
relative errors that stay below 3%. The proposed correla-
tion equation (12) will find application in engineering anal-
ysis and design providing a fast evaluation for cavity
thermal performance.

5. Conclusions

For the first time, the problem of natural convection and
its interaction with surface radiation has been solved for a
sub-class of right-angled triangular cavities filled with air.
Several combinations of the height-based Rayleigh number
Ra, the aperture angle u, wall emissivities e and prescribed
temperature difference DT were studied with the finite vol-
ume method.

The numerical results showed that the mean convective
Nusselt number at the hot wall increases when the height-
based Rayleigh number increases. In contrast, the mean
convective Nusselt number at the hot wall increases when
the aperture angle u decreases. Owing that surface radia-
tion alters the air velocity and temperature fields inside
the cavity, this leads to an elevation in the convective Nus-
selt number on the hot wall. Moreover, the contribution of
the radiative heat flux to the total heat flux turns out to be
more significant for high Ra. The radiative Nusselt number
becomes bigger with increasing Rayleigh numbers and
decreasing aperture angles. The temperature difference
between the hot and cold walls DT seems to have an inde-
pendent influence and it is evident that for a constant Ray-
leigh number the radiative Nusselt number decreases with
DT. When calculating the radiative Nusselt number, the
numerical results showed that their values considering nat-
ural convection–radiation interaction are higher than when
no interaction is considered. However, the results are lower
than the uncoupled solution obtained from a simplistic
radiative analysis using enclosure theory with constant
temperature surfaces, leading to important errors especially
for increasing aperture angles.
For real engineering applications, a comprehensive cor-
relation equation is indispensable. Accordingly, a correla-
tion equation has been reported which may be useful for
efficacious cavity design.
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